This collage of solar images from NASA’s Solar Dynamics Observatory
(SDO) shows how observations of the sun in different wavelengths helps
highlight different aspects of the sun‘s surface
and atmosphere. Taking a photo of the sun with a standard camera will
provide a familiar image: a yellowish, featureless disk, perhaps colored
a bit more red when near the horizon since the light must travel
through more of Earth’s atmosphere and consequently loses blue
wavelengths before getting to the camera’s lens. The sun, in fact, emits
light in all colors, but since yellow is the brightest wavelength from
the sun, that is the color we see with our naked eye — which the camera
represents, since one should never look directly at the sun. When all
the visible colors are summed together, scientists call this “white
light.”
Specialized instruments, either in ground-based or space-based telescopes, however, can observe light far beyond the ranges visible to the naked eye. Different wavelengths convey information about different components of the sun’s surface and atmosphere, so scientists use them to paint a full picture of our constantly changing and varying star. Yellow-green light of 5500 Angstroms, for example, generally emanates from material of about 10,000 degrees F (5700 degrees C), which represents the surface of the sun. Extreme ultraviolet light of 94 Angstroms, on the other hand, comes from atoms that are about 11 million degrees F (6,300,000 degrees C) and is a good wavelength for looking at solar flares, which can reach such high temperatures. By examining pictures of the sun in a variety of wavelengths – as is done through such telescopes as NASA’s Solar Dynamics Observatory (SDO), NASA’s Solar Terrestrial Relations Observatory (STEREO) and the ESA/NASA Solar and Heliospheric Observatory (SOHO) — scientists can track how particles and heat move through the sun’s atmosphere.
Specialized instruments, either in ground-based or space-based telescopes, however, can observe light far beyond the ranges visible to the naked eye. Different wavelengths convey information about different components of the sun’s surface and atmosphere, so scientists use them to paint a full picture of our constantly changing and varying star. Yellow-green light of 5500 Angstroms, for example, generally emanates from material of about 10,000 degrees F (5700 degrees C), which represents the surface of the sun. Extreme ultraviolet light of 94 Angstroms, on the other hand, comes from atoms that are about 11 million degrees F (6,300,000 degrees C) and is a good wavelength for looking at solar flares, which can reach such high temperatures. By examining pictures of the sun in a variety of wavelengths – as is done through such telescopes as NASA’s Solar Dynamics Observatory (SDO), NASA’s Solar Terrestrial Relations Observatory (STEREO) and the ESA/NASA Solar and Heliospheric Observatory (SOHO) — scientists can track how particles and heat move through the sun’s atmosphere.
No comments:
Post a Comment